
Section 3.10
Related Rates



Related Rates Problems

In general we have been studying problems where one quantity is
changing.

In a related rates problem, two or more related quantities are changing
(often as functions of time).

area and circumference of a circle
radius, surface area, and volume of a sphere
height of a kite, length of its cord, and angle of elevation
. . .

If two quantities are related, then so are their rates of change.



Example 1

A cube has side length x , and all its sides are growing at the same rate.
How fast are the volume V and the surface area A changing?

V = x3 A= 6x2 dV

dt
= 3x2 dx

dt

dA

dt
= 12x

dx

dt

The rates of change of volume and surface area depend not only on the
rate at which the side length changes, but also on the current side length.

dV
dt
dA
dt

= 3x2 dx
dt

12x dx
dt

= x

4

Therefore, we can answer questions like this:

“If the volume is increasing at 4 cm3/sec, how fast is the surface area
increasing when the cube is 200 cm on each side?”



Related Rates Problems: The General Method

Solving Related Rates Problems
(1) If applicable, draw one or more figures representing the situation

found in the problem.

(2) Identify the quantities in the problem. Clearly identify which are
constants and which are variables.

(3) Determine which rates of change are known and which rates
need to be calculated.

(4) Find an equation which relates the quantities whose rates you
know to quantities whose rates you need to calculate.

• Often, this equation is geometric.

(5) Differentiate the equations implicitly and then substitute known
quantities. Solve explicitly for the rates that need to be
calculated.



Example 2: Oil is leaking from a hole in the ocean floor, forming a
circular oil slick whose area is increasing at a constant rate of 5 km2/day.
How fast is the radius of the oil slick increasing when the area is 100 km2?

We are interested in area A and radius r . Both are variable.

We know A′ = dA

dt
= 5 km2/day. We want to find r ′ = dr

dt
.

The equation A=πr2 relates the two quantities of interest.

Differentiate with respect to time: A′ = 2πr r ′ or r ′ = A′

2πr
.

When A= 100 we have r =√
A/π= 10/

p
π, so

r ′ = 1
2π

p
π

10
·5= 1

4
p
π

km/day.

Note: The bigger A (thus r) gets, the smaller r ′ will be.



Example 2: The height of a cylinder is increasing at 6 meters per second
and the radius is decreasing at 3 meters per second. How fast is the
volume of the cylinder changing when the cylinder is 5 meters high and
has a radius of 6 meters?



Example 3: Air is pumped into a spherical balloon at a constant rate of
3 cubic inches per second. When the radius of the balloon is 5 inches,
how fast is the surface area expanding?



Example 4: You are filming a rocket launch in Florida and are standing
4 kilometers away from the launch pad.

(a) A few seconds after the launch, your camera is tilted at an angle of
30◦ above the horizon. If the angle is increasing at 9◦ per minute, how
high is the rocket and how fast is it rising?

(b) When the rocket is 10 km high and rising at 8 km/s, how fast is the
camera angle increasing?

HeightDistance

4 km

θ

Quantities of interest:

Height of rocket H (variable)
Angle of camera θ (variable)
Distance camera to rocket D (variable)
Distance camera to launch pad 4 km (constant)



Example 4(a): Your camera is currently tilted at an angle of 30◦ above
the horizon. If the angle is increasing at 9◦ per minute, how high is the
rocket and how fast is it rising?



Example 4(b): When the rocket is 10 km high and rising at 8 km/s,
how fast is the camera angle increasing?



Example 5(a): A baseball diamond measures 90 feet on each side. A
batter hits a ball along the third base line and runs towards first base. At
what rate is the distance between the ball and first base changing when
the ball is halfway to third base, if at that instant the ball is traveling
with horizontal speed 100 ft/s?

90
ft

-

Batter

The quantities B and F can be related using the Pythagorean Theorem.



Example 5(b): At the instant the batter has run 1
8 of the way to first

base, his instantaneous speed is 30 ft/s. At what rate is the distance
between the ball and the batter changing?



Example 6: Joe, who is six feet tall, is walking away from a 14-foot tall
lamppost at a constant rate of 3 feet per second. When Joe is 10 feet
from the lamppost:
(a) How fast is the length of Joe’s shadow changing?
(b) How fast is the tip of the shadow moving away from the lamp post?



Example 7: A boat is pulled into a dock by a rope attached to the bow
of the boat and passing through a pulley on the dock that is 1 meter
higher than the bow. If the rope is pulled at a rate of 1 meter per
second, how fast is the boat approaching the dock when it is 8 meters
from the dock?



Example 8: At a certain moment, ship A is 6 miles south and 8 miles
west of ship B. Ship A at that moment is steaming east at 12 mph,
while ship B is steaming north at 15 mph. Are the ships approaching
each other or separating from each other? At what rate?

Ship A×+
12mph

S
hi

p
B

×+

15
m

ph

Distance



Example 9(a): Water is being pumped at a rate of 15 cubic feet per
minute into a conical reservoir 10 feet deep with a top radius of 5 feet.
How fast is the water level rising when the water is 4 feet deep?
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Example 9(b): Water is being pumped at a rate of 15 cubic feet per
minute into a leaky conical reservoir 10 feet deep with a top radius of 5
feet. Suppose that the water level is only rising at 1 foot/min when the
water is 4 feet deep. How fast is the water leaking out of the reservoir?



Example 9(c): A conical pile of gravel has volume 2000m3. The pile is
gradually collapsing, becoming shorter and wider; its height is decreasing
at a constant rate of 4 m/hr.

If the pile is currently 20 m high, how fast is the radius increasing?



Example 10: The minute hand on a watch is 8 millimeters long and the
hour hand is 4 millimeters long. How fast is the distance between the tips
of the hands changing at one o’clock?
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The minute hand on a watch is 8 millimeters long and the hour hand is 4
millimeters long. How fast is the distance between the tips of the hands
changing at one o’clock?



Example 11: Two arrows, arrow A and arrow B, have been shot by two
people standing 3 meters apart by a wall in the perpendicular direction to
the wall at the same time. At the instant that arrow A has traveled 5
meters, arrow B has traveled 9 meters. At that instant, arrow A is
traveling at 5 meters per second and arrow B is traveling at 7 meters per
second. How fast is their distance changing at that instant?

A
5m/sec

xA = 5m

B
7m/sec

xB = 9m

3 m D = Distance
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